F. Formalism
a category consists of 3 things:
(1) a collection Ob(C) of objects
(2) for each pair $X, Y \in O b(C)$ a set

$$
\operatorname{Mor}(x, y)
$$

of morphisms such that Nor (x, X) has a distinguised et $\mathbb{1}_{x}$
(3) for each triple $X, Y, Z \in O b(e)$ a composition

$$
\therefore: \operatorname{Mor}(x, y) \times \operatorname{Mor}(y, z) \rightarrow \operatorname{Mor}(x, z)
$$

satisfying $f \circ \mathbb{1}=f$

$$
\mathbb{1} \circ f=f
$$

$$
(f \circ g) \circ h=f \circ(g \circ h)
$$

examples

1) category of topological spaces J
$O b(\mathcal{J})=$ topological spaces
$\operatorname{Mor}(x, y)=\{$ contivicous functions $f: X \rightarrow Y\}$
composition is composition of functions
2) $C W \subset J \quad O b(C W)=\{C W$ complexes $\}$

Mor and • from J
3) category of groups \mathscr{H} and homomorphisms
4) Abc\& abel ian groups
5) homotopy category it

$$
O b(H)=\{\text { topologual spaces }\}
$$

$\operatorname{Mor}(X, Y)=\{$ homotopy classes of maps $X \rightarrow Y\}$
6) category of chain complexes C
$O b(e)=\{$ chain complexes $\}$
$\operatorname{Mor}(X, Y)=\{$ chain maps $X \rightarrow Y\}$
0 is composition of chain maps
7) If G a group we have a category e_{G} where

$$
\begin{aligned}
& \operatorname{Ob}\left(C_{G}\right)=\{*\} \\
& \operatorname{Mor}(*, *)=G
\end{aligned}
$$

0 is group multiplication
so morphisms donot have to be maps!
a covariant functor F from the category C to the category D
assignes to each $x \in O b(C)$ an object $F(x) \in O b(D)$ and to each $f \in \operatorname{Mor}(X, Y)$ a morphism $F(f) \in \operatorname{Mor}(F(x), F(y))$

$$
\begin{array}{ll}
\text { s.t. } & F\left(\mathbb{1}_{x}\right)=\mathbb{1}_{F(x)} \quad \text { and } \\
F(f \circ g)=F(f) \cdot F(g)
\end{array}
$$

a contravariant functor is the some except if $f \in \operatorname{Mor}(x, y)$ then $F(f) \in \operatorname{Mor}(F(y), F(x))$ and $F(f \circ g)=F(g) \circ F(f)$
examples: homotopy category of posited spaces

1) π_{1} « is a covariant functor from ${\hbar^{*}}^{\star}$ to $\notin \leftarrow$ category of
2) C_{*} is a covariant functor from $7^{* t o p o l o g i c a l ~ s p a c e s ~ g r o u p s ~}$ - singular chain complex
3) H_{*} is a covariant functor from C to \{graded abelioin groups $\}=\& R$
4) $H \circ C$ is a functor from 7 to $\$ R$ and viduces one from it to $2 R$
5) for fixed $n H_{1} \circ \mathrm{C}$ is a functor H to $A b^{*}$ abelian groups
6) $V=$ category of vector spaces and linear maps duality * is a contravariant functor V to V
a natural transform T between functor $F, G: C \rightarrow D$ is an assignment of a morphism $T_{x}: F(x) \rightarrow G(x) \quad \forall x \in O b(e)$
such that for each morphism $f \in \operatorname{Mor}(X, Y)$ in C

$$
\begin{aligned}
& F(x) \xrightarrow{F(f)} F(y) \\
& \downarrow T_{x} \\
& G(x) \xrightarrow{\circ} G(f) \\
& G(y)
\end{aligned}
$$

examples:

1) let $P 7$ be category of pairs (x, A) of topological spaces for each n, H_{n} is a functor from ρJ to A given $(X, A) \in O b(P J)$ let

$$
\partial_{n}: H_{n}(X, A) \rightarrow H_{n-1}(A)=H_{n-1}(A, \varnothing)
$$

be the map in the long exact sequence of a pair (and if $B \neq A$ then define $\partial_{n}: H_{n}(x, A) \rightarrow H_{n}(B, C)$ to be 0)
then ∂_{n} is a natural transform
2) If $f: G_{1} \rightarrow G_{2}$ a homeomorphism of abelian groups then we get an induced map $H_{*}\left(X ; G_{1}\right) \rightarrow H_{*}\left(X ; G_{2}\right)$ that behaves "naturally" with respect to maps $X \rightarrow Y$ this gives a natural transformation $H_{*}\left(\cdot ; G_{1}\right)$ to $H_{*}\left(\cdot ; G_{2}\right)$ a (generalized) homology theory is a set of functors

$$
h_{n}: P J \rightarrow A
$$

together with natural transforms $\partial_{n}: h_{n}(x, A) \rightarrow h_{n-1}(A, \varnothing)$
satisfying 1) (Homotopy) if $f, g:(X, A) \rightarrow(Y, B)$ are homotopic as maps of pairs, then $h_{n}(f)=h_{n}(g)$
2) (Exactness) \forall pairs $(X, A), i: A \rightarrow X, \rho:(X, \theta) \rightarrow(X, A)$ the sequence

$$
h_{n}(A) \xrightarrow{h_{n}(i)} h_{n}(x) \xrightarrow{h_{n}(j)} h_{n}(x, A) \xrightarrow{\partial_{n}} h_{n-1}(A)
$$

is exact $\forall n$
3) (Excision) if $Z \subset \bar{z} \subset \operatorname{lin}+A \subset A \subset x$ then the inclusion map $i:(X-z, A-z) \rightarrow(X, A)$ induces an isomorphism $h_{n}(2): h_{n}\left(x-z_{1} A-z\right) \rightarrow h_{n}(x, A) \quad \forall n$
4) (Additivity) if (X, A) is a disjoint union of pairs $\left(X_{\lambda}, A_{\lambda}\right), \lambda \in I$, then the inclusion maps $I_{\lambda}:\left(X_{\lambda}, A_{\lambda}\right) \rightarrow\left(X_{1} A\right)$ induce an isomorphism $\oplus_{\lambda}\left(1_{\lambda}\right)_{\infty}: \oplus_{\lambda} h_{n}\left(x_{\lambda}, A_{\lambda}\right) \rightarrow h_{n}(x, A)$

Th ${ }^{m} 28$ (Eileaberg-Steenrod):
If $\left\{h_{n}\right\}$ and $\left\{\partial_{n}\right\}$ is a generalized homology theory that satisfies
(Dimension) $h_{n}(p t)=\left\{\begin{array}{ll}G & n=0 \\ 0 & n \neq 0\end{array}\right.$ some abelian group G
then for any $C W$ pair $(x, A), h_{n}(x, A) \cong H_{n}^{\prime \prime}(x, A ; G)$
Idea of proof: look back at section D and see you can compute $h_{n}(x, A)$ for any $C W$-complex based only on the axioms so any 2 such functors will need to give the same answer for (X, A)
G. Geometric Interpretation of homology
the elements of $H_{n}(x)$ might be, at the moment, some what mysterious
here is something that seems more concrete
let M^{k}, N^{k} be 2 smooth oriented manifolds
call 2 maps $f_{0}: M^{k} \rightarrow X$ and $f_{1}: N^{k} \rightarrow X$ cobordant if \exists a smooth oriented manifold W^{k+1} and a map $F: W \rightarrow X$ such that

$$
\begin{aligned}
& \partial W=-M \cup N, \\
& F l_{M}=f_{0}, \text { and } F l_{N}=f_{1}
\end{aligned}
$$

let $\Omega_{k}(X)=$ cobordism classes of maps of k-manifolds into X group structure is disjoint union this is nice since we can think of
$\Omega_{1}(X)$ as union of $S^{\prime \prime}$ s in X (modulo surfaces) $\Omega_{2}(X)$ as union of surfaces in X (modulo 3-manifolds)
however geometrically appealing this might be it is actually very complicated

$$
\Omega_{k}(p t)=\left\{\begin{array}{cc}
\mathbb{Z} & k=0 \\
0 & 1 \\
0 & 2 \\
0 & 3 \\
\mathbb{Z} & 4 \\
\mathbb{Z} / 2 & 5 \\
0 & 6 \\
0 & 7 \\
\mathbb{Z} \oplus \mathbb{Z} & 8 \\
\mathbb{Z} \oplus / 2 & 9 \\
\mathbb{Z} / 2 & 10 \\
\mathbb{Z} / 2 & 11 \\
\neq 0 & n \geq 8
\end{array}\right.
$$

where as $H_{k}(p t)= \begin{cases}Z & k=0 \\ 0 & k \neq 0\end{cases}$
Fact: Ω_{k} is a generalized homology theory
every smooth manifold M^{n} has a triangulation, that is a union of embedded n-simplicies with disjoint interiors sit each $(n-1)$-simplex
is the face of exactly one n-simplex (if $\partial \mu \neq \varnothing$) or two n-simiplicies (and the $(1-1)$-simplex is oriented oppositely by two n-simplicies)
example:

lemma 29:

1) if M is an oriented, smooth, compact n-manifold then any map $f: M \rightarrow X$ defines an n-chain in $C_{n}(X)$
2) if M does not have boundary then f defines an n-cycle (and hence an element $[f(M)]$ is $H_{n}(x)$)
3) If M does not have boundary and f and g are homotopic, then $[f(\mu)]:[g(M)] \in H_{n}(x)$
4) if W is a compact $(n+1)$-manifold with $\partial W=-M_{0} \Perp M_{1}$ and $F: W \rightarrow X$ is a map, then $\left[\left.F\right|_{M_{0}}\right]=\left[F l_{\mu_{1}}\right]$ in $H_{n}(X)$

Proof idea: triangulate M with simplicies $\sigma_{1} \ldots \sigma_{k}$ then $f \circ \sigma_{1}$ are singular n-smimplices can assemble them so all statements true
Remark: So we get a map $\Omega_{k}(x) \rightarrow H_{k}(x)$

1) map sur)ective for $k \leq 6$ (so any homology class is "realized" by a manifold!)
2) map is an isomorphism for $k \leq 3$
3) for $k \geq 7$ homology classes that cant be realized by a manifold but $\forall \alpha \in H_{k}(X)$ some multiple $n \alpha$ can be realized.
