F. Formalism

T) if G a group we have a category CG where

$$Ob(C_G) = \{ * \}$$

 $Mor(*,*) = G$
 o is group multiplication so morphisms donot
have to be maps 1

a covariant functor
$$F$$
 from the category C to the
category D
assignes to each $X \in Ob(C)$ an object $F(X) \in Ob(D)$
and to each $f \in Mor(X,Y)$ a morphism $F(f) \in Mor(F(X), F(Y))$
 $5.f. F(1_X) = 1_{F(X)}$ and
 $F(f \circ g) = F(f) \circ F(g)$

a contravariant functor is the some except if f & Mor(X,Y) then F(f) & Mor(F(K), F(X)) and F(fog)=F(g) o F(f) examples: fundomental group i) π_i is a covariant functor from \mathcal{H}^* to $\mathcal{H} \leftarrow category$ of z topological spaces groups z) \mathcal{L}_* is a covariant functor from \mathcal{T} to $\mathcal{C} \leftarrow chain complexes$ ^r sungular chain complex 3) H, is a covariant functor from C to {graded abelion groups}= 2R 4) Hol is a functor from 7 to ZR and induces one from 14 to ER 5) for fixed n H, °C is a functor H to Ab abelian groups 6) V= category of vector spaces and linear maps duality * is a contravoriant functor V to V a natural transform T between functors $F, G: C \rightarrow D$ is an assignment of a morphism $T_X : F(X) \rightarrow G(X) \quad \forall X \in Ob(C)$

such that for each morphism
$$f \in Mor(X, Y)$$
 in C

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\int_{T_X}^{T_X} \circ \int_{T_Y}^{T_Y} f(Y)$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

examples:
i) let 97 be category of pairs
$$(X,A)$$
 of topological spaces
for each n, H_n is a functor from 97 to A
given $(X,A) \in Ob(PT)$ let
 $\partial_n : H_n(X,A) \rightarrow H_{n-1}(A) = H_{n-1}(A, \emptyset)$
be the map in the long exact sequence of a pair
(and if $B \neq A$ then define $\partial_n : H_n(X,A) \rightarrow H_n(B,C)$
to be 0)
then ∂_n is a natural transform

2) If
$$f:G_{n} \rightarrow G_{n}$$
 a homeomorphism of abelian groups
then we get an induced map $H_{n}(X;G_{n}) \rightarrow H_{n}(X;G_{n})$
that behaves "naturally" with respect to maps $X \rightarrow Y$
this gives a natural transformation $H_{n}(\cdot;G_{n})$ to $H_{n}(\cdot;G_{n})$
(generalized) homology theory is a set of functors
 $h_{n}: PJ \longrightarrow A$
together with natural transforms $\partial_{n}: h_{n}(X;A) \rightarrow h_{n-1}(A,B)$
satisfying i) (Homotopy) if $f,g:(X;A) \rightarrow (Y;B)$ are homotopic
 $as maps of pairs, then $h_{n}(F) = h_{n}(g)$
 $Z) (Exactness) \forall pairs (X;A), i:A \rightarrow X, j:(X;B) \rightarrow (X;A)$
the sequence
 $h_{n}(A) \xrightarrow{h_{n}(J)} h_{n}(X) \xrightarrow{h_{n}(J)} h_{n}(X;A) \xrightarrow{\partial_{n}} h_{n-1}(A)$
is exact $\forall n$$

a

3)
$$(\underline{Excision})$$
 if $Z \in \overline{E} \subset \operatorname{int} A \subset A \subset X$ then the
inclusion map $i: (X - \overline{E}_1 A - \overline{E}) \rightarrow (X, A)$ induces an
isomorphism $h_n(1): h_n(X - \overline{E}_1 A - \overline{E}) \rightarrow h_n(X, A)$ $\forall n$

4) (Additivity) if
$$(X_{1}A)$$
 is a disjoint union of
pairs $(X_{\lambda}, A_{\lambda}), \lambda \in I$, then the inclusion
maps $l_{\lambda}: (X_{\lambda}, A_{\lambda}) \rightarrow (X_{1}A)$ induce on
isomorphism $\bigoplus_{\lambda} (l_{\lambda})_{*}: \bigoplus_{\lambda} h_{n}(X_{\lambda}, A_{\lambda}) \rightarrow h_{n}(X, A)$

 $\frac{Th^{m} 28 (Eilenberg-Steenrod)}{[If \{h_{n}\} and \{\partial_{n}\} is a generalized homology theory that satisfies}{(Dimension) h_{n}(pt) = \{G \quad n=0 \\ 0 \quad n \neq 0 \\ \text{then for any CW pair } (X_{1}A), h_{n}(X,A) \subseteq H_{n}(X,A;G) \}$

Idea of proof: look back at section D and see you can compute hnlX,A) for any CW-complex based only on the axioms so any Z such functors will need to give the same answer for (X,A)

G. Geometric Interpretation of homology

the elements of $H_1(X)$ might be, at the moment, some what mysterious here is something that seems more concrete let $M_i^k N^k$ be 2 smooth oriented manifolds call 2 maps $f_i: M^k \rightarrow X$ and $f_i: N^k \rightarrow X$ <u>cobordant</u> if $\exists a$ smooth oriented manifold W^{k+1} and a map $F: W \rightarrow X$ such that $\exists W = -M \cup N_i$ $Fl_M = f_0$, and $Fl_N = f_i$

however geometrically appealing this might be it is actually very complicated

$$\Omega_{k}(\rho t) = \begin{cases}
\frac{2}{2} & k = 0 \\
0 & 1 \\
0 & 2 \\
0 & 3 \\
\frac{2}{2} & 4 \\
\frac{2}{2} & 5 \\
0 & 7 \\
\frac{2}{2} \oplus \frac{2}{2} & 5 \\
\frac{2}{2} \oplus \frac{2}{2} \oplus \frac{2}{2} \oplus \frac{2}{2} & 5 \\
\frac{2}{2} \oplus \frac{$$

where as $H_k(pt) = \begin{cases} \mathcal{Z} & k=0\\ 0 & k\neq 0 \end{cases}$

Fact: Sh is a generalized homology theory every smooth manifold M^a has a triangulation, that is a union of embedded n-simplicies with disjoint interiors s.t. each (n-1)-simpler is the face of exactly one n-simplex (if dM = B) or two n-simplicies (and the h-1)-simplex is oriented oppositely by two n-simplicies)

$$\underbrace{\operatorname{lemma 29:}}_{i) if M is an oriented, smooth, compact n-manifold then any map $f: M \to X$ defines an n-chain in $C_n(X)$
2) if M does not have boundary then f defines an n-cycle (and hence an element $[f(M)]$ in $H_n(X)$)
3) if M does not have boundary and f and g are homotopic, then $[f(M)]: [g(M)] \in H_n(X)$
4) if W is a compact $(n+1)$ -manifold with $\partial W = -M_0 \perp M$, and $F: W \to X$ is a map, then $[F|_{M_0}] = [F|_{M_1}]$ in $H_n(X)$$$

Proof idea: triangulate
$$M$$
 with simplicies $\sigma_1 \dots \sigma_k$
then $f \circ \sigma_1$ are singular n -simplicies
can assemble them so all statements true
Remark: So we get a map $\mathfrak{L}_k(X) \to H_k(X)$
1) map surjective for $k \leq 6$ (so any homology class is
"realized" by a manifold!)
2) map is an isomorphism for $k \leq 3$
3) for $k \geq 7$ \exists homology classes that can't be realized by
a manifold but $\forall \alpha \in H_k(X)$ some multiple not
can be realized.